Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed?

نویسندگان

  • Carmen Menendez
  • Montserrat Dueñas
  • Pilar Galindo
  • Susana González-Manzano
  • Rosario Jimenez
  • Laura Moreno
  • Maria José Zarzuelo
  • Isabel Rodríguez-Gómez
  • Juan Duarte
  • Celestino Santos-Buelga
  • Francisco Perez-Vizcaino
چکیده

SCOPE The dietary flavonoid quercetin exerts protective cardiovascular effects. Because quercetin is rapidly metabolized into less active or inactive glucuronidated metabolites and the plasma concentrations of free quercetin are very low, a huge amount of scientific data generated along decades with the unconjugated compounds in vitro has been questioned. We aimed to determine whether glucuronidated quercetin can deconjugate in situ and whether deconjugation leads to a biological effect. METHODS AND RESULTS Quercetin and quercetin-3-O-glucuronide (Q3GA) were perfused through the isolated rat mesenteric vascular bed. Quercetin was rapidly metabolized in the mesentery. In contrast, the decay of Q3GA was slower and was accompanied by a progressive increase of quercetin in the perfusate and in the tissue over 6 h, which was prevented by the β-glucuronidase inhibitor saccharolactone. Incubation of mesenteric arterial rings mounted in a wire myograph with Q3GA for ≥1 h resulted in a significant inhibition of the contractile response which was also prevented by saccharolactone. Moreover, the intravenous administration of Q3GA resulted in a slow onset and sustained blood pressure lowering effect, demonstrating for the first time that Q3GA has effects in vivo. CONCLUSION We propose that Q3GA behaves as a quercetin carrier in plasma, which deconjugates in situ releasing the aglycone which is the final effector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids.

Flavonoids have been proposed to exert beneficial effects in the prevention of a large number of diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Paradoxically, despite the most representative flavonoid--quercetin--exerting biologically demonstrable systemic effects, it is not found in plasma after oral administration and its circulating metabolites show weak...

متن کامل

The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity.

UNLABELLED Quercetin exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in hypertensive humans and animal models. We hypothesized that oral quercetin might induce vasodilator effects in humans and that they might be related to the deconjugation of quercetin-3-O-glucuronide (Q3GA). DESIGN double blind, randomized, pl...

متن کامل

Mitochondrial Dysfunction Leads to Deconjugation of Quercetin Glucuronides in Inflammatory Macrophages

Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have n...

متن کامل

Glucuronidated Quercetin Lowers Blood Pressure in Spontaneously Hypertensive Rats via Deconjugation

BACKGROUND Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone) is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of qu...

متن کامل

Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans.

Quercetin is a major dietary flavonoid found in onions and other vegetables. It is known that dietary quercetin is metabolized in the intestinal mucosa and the liver and is present as its glucuronide/sulfate conjugates with or without methylation. Although quercetin is known to possess strong antioxidant activity, there are only limited reports on the antioxidant activity of its metabolites. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular nutrition & food research

دوره 55 12  شماره 

صفحات  -

تاریخ انتشار 2011